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Abstract
Lay judgments of environmental risks are central to both immediate decisions (e.g., taking shelter
from a storm) and long-termones (e.g., building in locations subject to storm surges). Usingmethods
fromquantitative psychology, we provide a general approach to studying lay perceptions of
environmental risks. As a first application of thesemethods, we investigate a settingwhere lay
decisions have not taken full advantage of advances in natural science understanding: tornado
forecasts in theUS andCanada. Because official forecasts are imperfect,members of the publicmust
often evaluate the risks on their own, by checking environmental cues (such as cloud formations)
before decidingwhether to take protective action.We study lay perceptions of cloud formations,
demonstrating an approach that could be applied to other environmental judgments.Weuse signal
detection theory to analyse howwell people can distinguish tornadic fromnon-tornadic clouds, and
multidimensional scaling to determine howpeoplemake these judgments.We find that participants
(N= 400 recruited fromAmazonMechanical Turk)have heuristics that generally serve themwell,
helping participants to separate tornadic fromnon-tornadic clouds, but which also lead them to
misjudge the tornado risk of certain cloud types. The signal detection task revealed confusion
regarding shelf clouds,mammatus clouds, and cloudswith upper- andmid-level tornadic features,
which themultidimensional scaling task suggestedwas the result of participants focusing on the
darkness of theweather scene and the ease of discerning its features.We recommend procedures for
training (e.g., for storm spotters) and communications (e.g., tornadowarnings) that will reduce
systematicmisclassifications of tornadicity arising fromobservers’ reliance on otherwise useful
heuristics.

‘If you hear a roaring sound, or see a
funnel cloud, you should seek shelter
immediately.’—Canadian Broadcasting
Corporation (CBC) Radio, 1 July 2014,
2:00pmEST

More than 1000 tornadoes hit the United States and
Canada each year, resulting in deaths and property
damage, sometimes on a catastrophic scale (National
Oceanic and Atmospheric Association (NOAA) 2014a).

For example, theMay 2011 tornado in Joplin, Missouri,
resulted in 159 deaths and caused nearly USD 3 billion
in damage (Masters 2012, NOAA 2015). In Europe, all
but a handful of countries have experienced tornadoes
(Groenemeijer and Kuhne 2014), with many European
nations currently improving their severe storm forecast-
ing systems (Rauhala and Schultz 2009).

Field reports of severe storms are essential to tor-
nado warnings and forecasting because remote sensing
data cannot definitively identify some critical storm fea-
tures (Doswell et al 1998, League et al 2010,NOAA2011,
Brotzge and Donner 2013). These forecasts are limited
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by the computational challenges of data processing,
insufficient observations of high spatiotemporal resolu-
tion, and the lack of valid radar- or satellite-visible pre-
dictors for some tornadic weather patterns (Brotzge and
Donner 2013). Moreover, there are too few trained
storm spotters to reliably providewarningswith the lead
time needed for effective action (Rauhala and
Schultz 2009). As a result, members of the public must
often evaluate the risks on their own (Doswell et al 1998,
Durage et al 2012, Brotzge andDonner 2013). Their suc-
cess depends on how well they can gauge the risks from
observable cues (Brotzge and Erickson 2010, Lindell
and Perry 2012, Brotzge and Donner 2013). As in the
CBC broadcast, valid cues can be both visual (e.g.,
clouds, wind, hail) and auditory (e.g., the ‘roar of a
‘freight train’ ’) (NOAA 2011, Lindell and Perry 2012,
p 168).

Weather forecasters’ communications attempt to
help members of the public take appropriate safety
measures. Research has found that people often seek
visual and auditory cues before deciding whether to
heed them (Liverman andWilson 1981, Sorensen 2000,
Lindell et al 2005, Dash and Gladwin 2007, League
et al 2010, Lindell and Clayton 2012). For example, the
sight of rising water levels has been found to prompt
residents to evacuate before an approaching hurricane
(Morss and Hayden 2010). However, relatively little is
knownabout how andhowwell laypeople extract infor-
mation frommost environmental cues.Here, we offer a
general approach to addressing this question,within the
normative–descriptive–prescriptive framework of
behavioural decision research (Edwards 1954, Fischhoff
and Kadvany 2011), illustrated with lay evaluation of
visual cues for tornado risk. We begin by briefly sum-
marizing meteorological research into the diagnostic
value of those cues (normative analysis). We then assess
lay observers’ ability to extract diagnostic information
from pictures of clouds, based on methods from deci-
sion science (descriptive analysis). These results then
frame recommendations for policies designed to
accommodate and reduce the limits to lay abilities (pre-
scriptive analysis). In addition to advancing the under-
standing of tornado risks, we hope to illustrate a
method applicable to other environmental hazards,
both immediate (e.g., floods) and long-term (e.g., living
in an area prone toflooding).

The training of storm spotters is based onmeteorol-
ogists’ analysis of the cues most useful for predicting
severe thunderstorms and tornadoes. US National
Weather Service (NWS) training emphasizes visual cues
(NOAA 2011), such as wall clouds, a characteristic low-
ering of the storm from which tornadoes descend, and
having a ‘solid or hard-looking storm tower
with a cauliflower appearance,’ indicating strong storm
activity (NOAA 2011, p 22). Figure 1 shows examples,
all taken from official NWS materials or from profes-
sional weather photographers, sources that included
verification of the weather scene in the photograph (see
methods). Figure A1 in supplementary information (A)

(SI(A)) provides further examples. Unfortunately, no
cue is perfectly predictive and themost predictive ones,
such as the formation of a funnel cloud (figure 1(F)),
occur so late that they provide little response time.
Moreover, some important cues can be difficult to dis-
tinguish from less tornadic phenomena (NOAA 2011,
NWS 2014b). For example, shelf clouds (figure 1(C))
may look very similar to wall clouds. Although storm
spotters are trained to make these distinctions
(NOAA 2011, NWS 2014b), even they sometimes have
difficulty (NOAA 2011, Brotzge and Donner 2013,
NWS 2014b). SI(A) describes more fully the tornado
detection and warning procedures and the perfor-
mance metrics that provide the normative analysis
underlying the present research. In this study, we focus
on North America, where tornadoes pose the greatest
threat and where tornado forecasting is most devel-
oped; see Rauhala and Schultz (2009) for a comparison
of theAmerican andEuropean systems.

Here, we present descriptive research into how
and how well laypeople detect tornado danger from
clouds, applying two approaches from psychophysics,
the study of psychological responses to physical sti-
muli: signal detection theory (SDT) (Green and
Swets 1988, Wickens 2001, Macmillan and Creel-
man 2004) and multidimensional scaling (MDS)
(Baird and Noma 1978, Borg and Groenen 2005,
Borg et al 2012). SDT separates decision-maker abil-
ity (called sensitivity) to detect signals (here, tornado
potential) from the decision rule for acting as though
a signal exists. Thus, SDT recognizes that false alarms
(FAs) for tornadoes depend on both how well fore-
casters can detect them and how cautious forecasters
want their forecasts to be (Harvey et al 1992,
Brooks 2004). Similarly, SDT can distinguish
between situations where people fail to seek shelter
(a) because they do not see the risk, and (b) because
their belief about the odds of a tornado occurring is
incorrect or because the inconvenience of a FA feels
too high. MDS extracts the dimensions that decision-
makers use in determining the extent to which sti-
muli are similar (e.g., how much cloud formations
look like an archetype of a tornado), and can reveal
perceptual processes that individuals may not realize
or be able to articulate (e.g., ‘It just looks like a tor-
nado.’). These methods formalize the analysis of
uncertain situations.

We use separate, but interrelated, tasks for SDT
and MDS. The SDT task asks participants to judge
whether each of 50 pictures of clouds drawn from
public sources4 was taken when a tornado watch was
in effect. We elicited a categorical judgment, rather
than a continuous one, given the meteorological diffi-
culty of assigning degrees of tornadicity to cloud for-
mations. We chose ‘tornado watch’ as a relatively

4
A library of all the stimuli collected during the creation of this

experiment is available at http://goo.gl/WXQPuW. A subset of the
librarywas used in the experiment (as indicated in the library).
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familiar, and important, category; see discussion for
more details. The MDS task asks participants which
picture seems more tornadic, in pairs involving 11 of
the 50 pictures. All participants performed both tasks,
with half starting with SDT and half with MDS. We
expected that performing the MDS task first would
improve SDT performance as a result of providing an
opportunity to study some of the stimuli (Mundy
et al 2007, de Zilva and Mitchell 2012). On the other
hand, we did not expect the SDT task to affect MDS
judgments, thereby producing an asymmetrical trans-
fer effect, whereby one task affects the other but not
vice versa (Poulton and Freeman 1966).

Our experimental design also compares two prob-
ability response modes for the SDT task (Lichtenstein
et al 1982). The half-range task has participants decide
whether a picture was taken during a tornado watch,

and then give their confidence in that judgment with a
probability in the (50%–100%) range. The full-range
task has participants give a probability judgment for
the picture having been taken during a tornado watch,
using the (0%–100%) range. We expected the half-
range responsemode to elicit slightly better sensitivity,
by encouraging greater focus on discrimination in its
first stage.

Understanding the effects and nuances of tornado
experience is a topic of interest in natural hazards
research (Blanchard-Boehm and Cook 2003, Nagele
and Trainor 2012, Drost 2013, Demuth 2014). As a
result, we also collected information about partici-
pants’ tornado experience, weather knowledge, emer-
gency preparedness, numeracy, and demographic
characteristics, as covariates for modelling perfor-
mance in the SDT task.

Figure 1.Example stimuli (cloud photographs). (A)A supercell thunderstormwith a ‘cauliflower-like,’hard-textured appearance. (B)
Awall cloud. (C)A shelf cloud. (D)Blue skies, with a few cirrus clouds. (E) and (F)Tornadoes, with their funnel clouds clearly visible.
Note that (D), (E), and (F) form the attention-checking stimuli (seemethods). Photos courtesy ofNOAA ((A), (C), (E), (F)), Roger
Edwards ((D)), andMarkoKorošec (B).

3
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Methods

Participants (N= 400) recruited via AmazonMechan-
ical Turk completed three tasks: SDT evaluation of
cloud tornadicity, MDS comparison of cloud similar-
ity, and personal information questions. Participants

were randomly assigned to one of four cells in a 2× 2
design, with the factors of (a) SDT response range
(half-range or full-range) and (b) task order (SDT or
MDSfirst). Details appear in SI(B).

The SDT and MDS tasks use photographs of
clouds taken from public sources. Each picture was

Figure 2.A screenshot of a question from the signal detection task (half-range version). Photo courtesy ofNOAA.

Figure 3.A screenshot of a question from the signal detection task (full-range version). Photo courtesy ofNOAA.
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classified as tornadic or non-tornadic, based on its
description by its source and NWS criteria
(NOAA 2014b, 2014c). There were 25 pictures of
each type.

Figures 2 and 3 show examples of the two SDT
tasks, half- and full-range, differing solely in how
responses were elicited. The ‘tornado watch’ formula-
tion of both prompts was designed to elicit a judgment
of whether a cloud formationwas tornadic or non-tor-
nadic, which we then compared with its actual classifi-
cation based on the NWS criteria. Participants saw 50
pictures, without being told the 50% base rate of tor-
nadic stimuli. Three of the 50 pictures were exception-
ally easy (two Wizard of Oz-type tornadoes, one clear
blue sky), in order to assess whether participants were
paying attention (see figure 1). The two tornadoes
opened and closed the task. The other 48 stimuli
(including the clear blue sky) were in a random order
for each participant. Response time data were col-
lected in order to see if people spent more time in one
condition than another.

After completing these judgments, participants
answered three open-ended questions:

• In 25 words or less, what does a ‘tornado watch’
mean to you?

• What made cloud pictures look like they were taken
during a tornadowatch?

• What made cloud pictures look like they were not
taken during a tornadowatch?

In the MDS task, participants saw all pairwise
combinations of 11 pictures drawn from the full set of
50, yielding 55 pairs. These 11 pictures were chosen to
create pairs varying widely in similarity, so that the

MDS algorithms could more easily uncover the psy-
chological dimensions underlying participant judg-
ments (Borg et al 2012); 6 were tornadic and 5 non-
tornadic. Seefigure 4.

After completing these tasks, participants were
asked for their age, gender, education, and state/pro-
vince of residence. They also answered questions
about their tornado experience, interest and knowl-
edge regarding weather, and level of emergency pre-
paredness. Finally, they completed two standard
instruments: (a) the seven-item weather salience ques-
tionnaire (short form), designed to gauge the psycho-
logical significance of weather (Stewart 2009, Stewart
et al 2012); and (b) the eight-item Subjective Numer-
acy Scale (Fagerlin et al 2007), which has been found to
predict individuals’ ability to understand risk commu-
nications (Zikmund-Fisher et al 2007). Table 1 pro-
vides some example questions.

Results

After describing the sampleʼs demographic character-
istics, we present results for the SDT and MDS tasks.
Finally, we analyse individual-level predictors of SDT
performance.

Sample demographics
The sample had 156 men and 244 women, whose age
ranged from 18–75 years old (mean = 37, med-
ian = 33). Three reported ‘some high school’ as their
highest level of education, 48 ‘high school,’ 20 ‘com-
munity college,’ 130 ‘some college,’ 143 ‘college,’ 47
‘graduate school,’ and 9 ‘professional school.’ Partici-
pants were widely distributed geographically, allowing
for varied tornado experiences (as reported below).

Figure 4.A screenshot of a question from themultidimensional scaling task. Photos courtesy ofNOAA.
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Twenty-two participants failed at least one of the
attention-check questions. All analyses were run with
those individuals, andwemake note of any substantive
results that would change if those participants were
excluded.

Signal detection results
Sensitivity (d′)
Signal detection parameters were estimated using
participants’ choices (i.e., tornadic or non-tornadic)
and confidence judgments. In the half-range mode,
those responses were used directly. In the full-range
mode, 50% was taken as the cutoff (randomly

treating 50% responses as tornadic or non-tornadic)
and the absolute deviation from 50% was used as the
measure of confidence (following Juslin et al 1997,
who provide a normative analysis of this
procedure)5.

In order to estimate sensitivity (d′), we first com-
puted the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve for each partici-
pant; see figure 5. AUC is bounded between 0 and 1.
To create an unbounded measure, which can be

Table 1.Example personal information questions. See SI(E) for the full list of questions.

Topic Example items Response options

Weather salience ‘I take notice of changes that occur in theweather.’ Never (1), seldom (2), sometimes (3), usually (4), all
of the time (5).

‘I notice how the clouds look during various kinds of

weather.’

Never (1), seldom (2), sometimes (3), usually (4), all
of the time (5).

Subjective numeracy Howgood are you at workingwith fractions? Six-point scale (1–6), from ‘not at all’ to ‘extremely.’

Howgood are you at workingwith percentages? Six-point scale (1–6), from ‘not at all’ to ‘extremely.’

Experience Have you ever experienced a tornado directly? Yes (1), no (0).
Do you have friends or familywho have experienced a tor-

nado directly?

Yes (1), no (0).

Weather interest Howknowledgeable are you about theweather? Four-point scale (1–4), from ‘not at all’ to

‘extremely.’

How interested are you in theweather? Four-point scale (1–4), from ‘not at all’ to

‘extremely.’

Figure 5.Each point along the receiver operating characteristic (ROC) curve provides the hit (H) and false alarm (FA) rates for an
observer with a decision criterion c, given a fixed value of d′. An observer who performs no better (orworse) than chance (d′ = 0)has
the ROC curve given by the lineH= FA, as seen in thefigure. The ROC curve lying above that line depicts the performance of an
observer who has performed better than chance (d′> 0). The area between the ROC curve and the horizontal axis provides ameasure
of sensitivity, called the area under the curve (AUC). Empirically, themost commonways of eliciting anROC curve are by performing
multiple experiments, inducing a change to the decision criterion each time, and by using confidence ratings within a single
experiment (as in our task). In the latter, one can graph the ROC curve by computing the pair (FA,H)while varying the x% (in (0%–

100%)) used as the ‘tornadic’ cutoff. See, e.g.,Macmillan andCreelman (2004),Wickens (2001) formore details.

5
This convention allows converting half-range responses to full-

range, and vice versa.
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compared to other methods for estimating d′ (see SI
(C)), we also computed d′= z AUC 2 ,( ) · where z is
the quantile function of the normal distribution with
mean 0 and variance 1. See SI(C) and Wickens (2001)
for details.

Figure 6 shows participant d′s. The samplemean d′
is 1.08, with a 95% confidence interval for the mean of
(1.04, 1.11). Thus, most participants performed mod-
erately well, with that mean indicating a classification
accuracy of about 70% (for individuals trying to

Figure 6.Histograms of participant sensitivities (d′) and decision criteria (c), and a plot of d′ versus c. The plot of d′ versus c shows that
d′ and c are roughly uncorrelated (r 0.098= - ).
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maximize the number of correct classifications) (Lynn
andBarrett 2014).6

Bias (c)
The decision criterion (also called the decision bias,
decision rule, or response bias) for each participant was
estimated from that individualʼs hit (H) and FA rates7.
There are many measures of decision bias. We use8

c z z0.5 H FA .( ( ) ( ))= - +
Normatively, c is a function of both the observerʼs

belief about the base rate of the signal, and their payoff
matrix (i.e., their valuation ofHs,misses, correct rejec-
tions, and FAs) (Coombs et al 1970, Baird and
Noma 1978). If participants value the outcomes such
that they care only about their classification accuracy, c
should reflect their belief about the base rate of the sig-
nal, as they should cite the more common category
whenever they cannot make a discrimination. Alter-
natively, participants might differentially value Hs,
misses, correct rejections, and FAs, in which case cwill
reflect that bias.

We chose c as a measure of bias because it has sev-
eral attractive properties (Macmillan and Creel-
man 2004, ch 2), including its easy interpretation. If c
reflects the observerʼs valuation of Hs, misses, correct
rejections, and FAs, then c= 0 (called a ‘neutral’ deci-
sion rule) indicates that signal (tornadic) and noise
(non-tornadic) stimuli are of equal importance to the
observer, positive values (called ‘conservative’) indi-
cate less tolerance for FAs relative to misses, and nega-
tive values (called ‘lax’) indicate greater tolerance for
FAs relative to misses (Baird and Noma 1978, Wick-
ens 2001, Macmillan and Creelman 2004). If c solely
reflects beliefs about the base rate of the signal, analo-
gous interpretations exist for neutral, conservative,
and lax criteria: a neutral criterion implies a perceived
base rate of 50%, a conservative criterion implies the
perception that the signal rarely occurs, and a lax cri-
terion implies the perception that the signal is
common.

The mean c is −0.02, with a 95% interval of
(−0.06, 0.02). Figure 6 shows a histogram of partici-
pant cs. On average, participants had an approxi-
mately neutral decision criterion, but with a range of
individual policies. Figure 6 also contains a plot of d′

versus c, showing that d′ and c are roughly uncorre-
lated (r 0.098= - ).

According to a strict utility interpretation, the
positive c values among the distribution of cs in
figure 6 would indicate that many participants wanted
to avoid FAs at the cost of increasing the number of
misses, which seems unlikely given the dangers posed
by tornadoes. Instead, we think the diversity of c values
observed could be better explained by participants
attempting to maximize their accuracy, setting their cs
to reflect their beliefs in the odds of a tornadic stimulus
occurring in the task. Similarly, it is likely that the nat-
ure of the task—asking for a tornadicity classification,
rather than, say, about what the participant would do
given the weather scene—supports a probability inter-
pretation over a utility interpretation. Thus, we shall
interpret c as reflecting participants’ priors, recogniz-
ing that some participants may also have incorporated
utilities into their decision criteria.

Stimulus-level results
Figure 7 shows how accurately the individual stimuli
were classified as tornadic (signal) or non-tornadic
(noise), based on the mean full-range probability
assigned (using all responses, converting those given
for the half-range task to probabilities on the 0%–

100% scale; see footnote 5). As can be seen, although
the mean probability judgment was higher than 50%
for most tornadic clouds (labelled with an ‘s’) and
lower for most non-tornadic ones (labelled with an
‘n’), there were some exceptions9. The MDS scaling
results guided our interpretation of the features
affecting the accuracy of these judgments.

Multidimensional scaling
MDS creates a geometric representation of the stimuli
using participants’ judgments of the more tornadic
picture among each of the 55 paired comparisons
created from the 11 selected pictures. Using standard
criteria (see SI(D)), we found the best fit with the two-
dimensional representation in figure 8, with dimen-
sions that we interpret as reflecting (a) the darkness or
‘ominousness’ of the picture and (b) its clarity,
referring to how easy it is to discern and interpret the
features of the cloud formation thatmark it as tornadic
or non-tornadic. Looking at the specific pictures, we
find potential sources for misclassifications: pictures
of (non-tornadic) shelf clouds (1, 3) and (tornadic)
supercells (6, 7, 8) were seen as similar. Pictures with
upper- and mid-level tornadic cloud features (9, 10)
were seen as similar to non-tornadic fair weather
cumulus clouds (2). Among the tornadic photographs,

6
Changes in theNWS criteria used to classify the stimuli as tornadic

or non-tornadic could change based on advances in the meteorolo-
gical understanding of tornadoes. While such a change would
necessarily affect our estimates of the signal detection parameters, it
would not impact our conclusions. Any reader planning to use our
values as estimates of the populationʼs psychophysical parameters
should be aware of this uncertainty. We thank an anonymous
reviewer for highlighting this point.
7
The AUC calculation, used to estimate d′, is based on an ROC

curve, which shows H and FA rates associated with alternative
decision rules. As a result, it provides nomeasure of bias.
8
In order to account for H or FA equalling 1 or 0, we added 0.5 to

each cell of the contingency table. This converts, for example, an H
of 1 (i.e., all 25 tornadic photographs correctly classified as tornadic)
into the fraction ,25.5

26
and similarly, a FA of 0 into 0.5

26
(Hautus 1995,

Macmillan andCreelman 2004).

9
Note that, in figure 7, some of the tornadic stimuli below 50% (s6,

s26, s35) are very close to the 50% mark, as is the dust storm (n2)
that is above 50%. Similarly, a supercell (s40) and awave cloud (n13)
are very close to the 50% mark, though these are above and below
50%, respectively. In fact, if we consider a stimulus misclassified if
the 95% confidence interval for its mean rating contains 50%, then
s40 and n13 aremisclassified aswell.

8
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9 and 10 were seen as the most dissimilar to the
tornadic extreme represented by 11. A unidimensional
scaling (provided in SI(D)) confirmed the upper- and
mid-level tornadic clouds are likely to be confused
with non-tornadic clouds. Put simply, shelf clouds
look worse than they are because they are both
ominous and dark, with structural features that might
seem unfamiliar to the untrained eye. Clouds with
upper- and mid-level tornadic features are slightly
unusual, but the blue skies that surround them mean
they are fairly bright, and (we speculate) less ominous
to the layperson. These results were not affected by
whether participants performed the MDS task first or
the SDT task first.

The MDS results shed light on the systematic mis-
classifications that occurred in the SDT task (figure 7).
All of the shelf clouds (n3, n19, n20, n27, n29) were
classified inaccurately, as were four of the five with
upper- and mid-level cloud features (s2, s6, s26, s27).
The other tornadic pictures that were misclassified

contained mammatus clouds (s24, s35): the MDS
would suggest this was because of their brightness. A
picture of lightning (n31) and a dust storm (n2) were
misclassified as tornadic: the former is certainly omi-
nous, and the latter is dark, with features that are
(almost by definition)difficult to discern.

We directly tested the link between the MDS
results and SDT results by regressing the mean SDT
full-range scores of the 11 common stimuli onto their
coordinates in the two-dimensional MDS space.
Table 2 displays the estimated coefficients for the
darkness and clarity dimensions, which account for a
large proportion of the variance (R 0.972 = ). We see
that the darkness/ominousness dimension is clearly
the more important dimension, and that the linear
regression does a good job of modelling the SDT
scores, as would be expected if MDS captures the attri-
butes underlying judgments of tornadicity. We also
regressed each individualʼs SDT scores on the MDS
coordinates, to see how well individual SDT scores

Figure 7.Boxplots of samplemeans for all stimuli ratings on the full-range, 0%–100% scale, corresponding to the judged ‘Probability
this picturewas taken during a tornadowatch.’An ‘s’ specifies a tornadic (i.e., ‘signal’) stimulus, and ‘n’ a non-tornadic (i.e., ‘noise’)
stimulus. The labelling scheme corresponds to the stimulus library (see footnote 4). The horizontal line is placed at 50% tomore easily
separate those stimuli withmean ratings above/below 50% (see themain text).
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were modelled by the aggregate MDS solution. The
average R2 was 0.7. Note that to make interpretation
easier, the coordinates of the MDS representation
were standardized, and the space transformed so that
its origin represents the location of a hypothetical sti-
mulus having essentially no ‘darkness/ominousness’
and being the least ‘clear’ possible.

Individual differencemeasures
Participants’ responses to the seven questions of the
weather salience questionnaire (short form) were
summed (with question 5 reverse scored) to form a

weather salience score (WxSQ), which had a Cron-
bachʼs α of10 0.61. Participants’ responses on the
subjective numeracy questions were averaged to
produce a subjective numeracy score (SNS), which
had a Cronbachʼs α of 0.86. We created a Tornado
or Dixie Alley score (0, 1), reflecting whether
participants were in one of two tornado-prone
regions. The former includes Texas, Oklahoma,
Kansas, Missouri, Iowa, Nebraska and South Dakota
(n = 54) and the latter Louisiana, Arkansas, Mis-
sissippi, Alabama, Tennessee, and Georgia11

(n = 35). The three questions regarding knowledge,
interest, and forecast-following behaviour were
transformed to a 1–4 scale, and then averaged (and
standardized) to create a (self-reported) meteoroph-
ily score, which had a Cronbachʼsα of 0.68. The nine
items related to participants’ severe-storm experi-
ence were summed (and then standardized) to create
an experience score, which had a Cronbachʼs α of
0.76. The item measuring the impact of participants’
tornado experience was kept separate and standar-
dized. Having emergency supplies, a planned place
to take shelter, and knowing that a tornado warning
is more serious than a watch—all binary variables—
were kept separate and untransformed. Finally, we
created a binary variable fail, equal to 1 if the
participant failed any of our attention checks, and 0

Figure 8.Two-dimensional scaling of the 11 stimuli in theMDS task. The horizontal dimension refers to the darkness/ominousness
of theweather scene. The vertical dimension refers to the clarity of the scene, i.e., how easy it is to discern and interpret the important
structural features of the cloud formations.Note that, with respect to the stimulus library (see footnote 4), stimulus 1 is n3, 2 is n15, 3 is
n19, 4 is n31, 5 is n22, 6 is s11, 7 is s21, 8 is s23, 9 is s26, 10 is s27, and 11 is s31. Photos courtesy ofNOAA (1, 2, 3, 6, 7, 8, 9, 10, 11) and
Roger Edwards (4, 5). Stimuli 3, 6, and 8 have been shifted from their true positions to reduce overlap: SI(D) contains the same scaling
without the overlay of photographs.

Table 2.Coefficient estimates and standard errors
for a regressionmodelling themean SDT full-
range scores (i.e., mean judged prob(tornadic)) as a
function of theMDS coordinates.

Dependent variable:

prob(tornadic)

Darkness/ominousness 25.89a

(1.57)
Clarity 1.05

(1.57)
Constant 4.61

(4.01)

Observations 11

R2 0.97

AdjustedR2 0.96

Residual std. error 4.94 (df=8)
F Statistic 136.51a (df=2; 8)

Note.
a p<0.01.

10
Cronbachʼs α is a measure of internal consistency (Cron-

bach 1951). Bland and Altman (1997) provide a short and accessible
introduction toCronbachʼsα.
11

Though there are no formal definitions for these areas, we used
those from NOAA: see www.ncdc.noaa.gov/climate-information/
extreme-events/us-tornado-climatology/trends.
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otherwise. SI(E) further describes the creation of
thesemeasures.

Modelling SDTparameters
Table 3 predicts d′ and c as the dependent variables,
using the individual difference measures and the
experimental condition factor variables (SDT response
mode and task order) as covariates. See SI(F) for
regression diagnostics.

Themost striking results are the higher values of d′
for participants who report having had more personal
experience with tornadoes and having done more to
prepare for them, and the lower values of d′ among
those who report greater impacts from tornadoes and
those who failed the attention checks. None of the

following variables predicted greater sensitivity (d′):
living in Tornado or Dixie Alley12, finding weather
more salient (WxSQ), reporting greater meteorophily,
or knowing that a tornado warning is more serious
than a tornado watch. Decision bias (c) was related to
two individual difference measures: participants with
higher WxSQ scores (indicating that weather was
more salient for them) were more likely to see danger
in the cloud formations13, as were participants who
reported having planned a place to shelter during
severe weather. However, the finding about sheltering
was no longer significant when participants who failed
any of the attention-checks were excluded.

Because of the interaction in the model, the coeffi-
cients on order andmode in table 3 show simple effects
(i.e., the effect of task order and of response mode
when the other variable is set to 0). We used the results
in table 3 and the variance–covariance matrix of the
coefficients to investigate main effects as well. We
found that d′ was unrelated to whether the SDT task
came first or second, and whether the SDT task used
the half- or full-range mode. However, participants
were significantly less likely to categorize stimuli as
tornadic (i.e., had higher c values) when they com-
pleted the SDT task first, and significantly more likely
to categorize stimuli as tornadic (i.e., had lower c
values) when responding using the half-range mode.
The estimates for the main effect of task order and
responsemode on cwere 0.12 and−0.11, respectively,
with 95% confidence intervals of 0.04, 0.20( ) and

0.19, 0.03 .( )- -

Discussion

Psychophysical performance
The present study provides the first psychophysical
investigation of tornado risk perception. Our signal
detection analysis found that participants had some
ability to distinguish between tornadic and non-
tornadic stimuli, with the mean d′ of 1.08 equating to
about 70% accuracy for individuals with the roughly
neutral decision rule found here (c 0.02= - ). The low
correlation between d′ and c (figure 6) shows that
participants’ decision criteria are independent of their
perceptual ability to detect tornadicweather.

With respect to individual differences in psycho-
physical performance (table 3), participants who
reported more experience with tornadoes demon-
strated greater discrimination ability, whereas those
who reported greater impacts from tornadoes demon-
strated less and living in a tornado-prone area had no
effect. However, d′ was higher for individuals who

Table 3.Coefficient estimates and standard errors for regressions
modelling d′ and c, based on the individual differencemeasures and
the experimental conditions.

Dependent

variable:

d′ c

Order (0=MDS-SDT) −0.02 0.17b

(0.04) (0.06)
Mode (0= full-range) −0.05 −0.05

(0.04) (0.06)
Experience 0.07b 0.01

(0.02) (0.03)
Impacts −0.05b 0.01

(0.02) (0.03)
Alley (1= lives in Tornado/Dixie Alley) 0.02 −0.0002

(0.04) (0.05)
Meteorophily −0.003 −0.003

(0.02) (0.03)
Shelter (1= has planned shelter) 0.08a −0.10a

(0.04) (0.05)
Supplies (1=has supplies) −0.05 −0.008

(0.03) (0.05)
Watch-warning (1= knowswarning is 0.04 0.03

more serious) (0.04) (0.06)
WxSQ (weather salience) 0.01 −0.02b

(0.005) (0.007)
SNS (subjective numeracy score) 0.03a −0.01

(0.01) (0.02)
Fail (1= failed attention checks) −0.45b −0.07

(0.07) (0.09)
Order×mode 0.03 −0.11

(0.06) (0.08)
Constant 0.75b 0.63b

(0.14) (0.20)

Observations 400 400

R2 0.20 0.10

AdjustedR2 0.17 0.07

Residual Std. Error (df= 386) 0.30 0.41

F Statistic (df= 13; 386) 7.40c 3.38c

Note.
a p < 0.05.
b p < 0.01.

12
A secondary analysis found that living in Tornado Alley predicts a

0.1 increase in d′, while living inDixie Alley predicts a 0.1 decrease in
d′. The two groups combined, however, had only 89 people, from
the sample of 400.
13

We thank an anonymous reviewer for suggesting this probability-
based interpretation.
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reported having planned a place to shelter, who rated
themselves higher on the SNS, and who passed our
attention checks. Decision bias (c) was associated with
only two individual difference measures. Participants
with a higher weather salience score (WxSQ) were
more likely to categorize cloud formations as tornadic,
as were those who reported having planned a place to
shelter.

Discrimination was the same with the half-range
and full-range SDT tasks, contrary to our prediction
that the comparison required by the half-range task
would lead people to look more closely. Participants
did, indeed, spend an average 1.25 s longer on it per
judgment; however, that time apparently went into
completing the task, rather than thinking about its
content. For c, participants using the half-range mode
had a more lax criterion (i.e., were more likely to cate-
gorize a stimulus as tornadic). We had no prediction
regarding the effect of response mode on c, but spec-
ulate that explicitly choosing the category in the half-
range mode made utilities more salient than in the
full-range task, where the category was inferred from
the confidence rating. As a separate methodological
point, the best single predictor of d′ was the attention-
check indicator variable. Participants who improperly
classified any one of the two funnel clouds or the clear
blue sky showed poorer discrimination ability on the
other 47 stimuli, supporting the utility of such checks
(Oppenheimer et al 2009,Downs et al 2010).

We also found no better discrimination among
participants who did the MDS task first, contrary to
our prediction that examining a subset of the stimuli
would improve performance. However, d′ calculated
for just the 11 stimuli used in theMDS taskwas higher
for those who did theMDS task first (mean of 0.63 ver-
sus 0.56, although the 95% confidence interval for the
difference in means, 0.02, 0.17 ,( )- includes no differ-
ence). For related results, see de Zilva and Mitchell
(2012), Lavis and Mitchell (2006), Mundy et al (2007),
who investigate the features of prior exposure that
improve discrimination of stimuli and memory for
their attributes. Participants who performed the MDS
task first weremore likely to classify stimuli as tornadic
in the SDT task (had lower c values), suggesting that
prior exposure to stimuli led to an increased sense of
tornadic risk.

The MDS results suggest heuristics that might
affect performance—in the SDT task and perhaps in
life. Specifically, associating darkness with tornado
risk may lead to viewing upper- and mid-level torna-
dic clouds (the visible blue sky) as less tornadic than
they are; such clouds require some sophistication to
notice and understand the features that mark them as
dangerous, the lack of which could also lead to mis-
classification. Regression showed that the darkness/
ominousness and clarity dimensions effectively mod-
elled the mean response in the SDT task for the 11 sti-
muli included in both the MDS and SDT tasks. It also
showed that darkness/ominousness was much more

important than clarity; similarly, additional MDS ana-
lyses (see SI(D)) found that the darkness/ominousness
dimension was more important than clarity in
explaining judgments of cloud similarity. As cues of
actual (rather than perceived) tornadicity, darkness/
ominousness has validity, given that severe storms are
dark when they are overhead or very close by. On the
other hand, cloud formations with more easily dis-
cernible features (i.e., higher on the clarity dimension)
are, to the best of our knowledge, nomore or less likely
to be tornadic14. Future work could, by scaling a large
set of stimuli, clarify both the link between the dimen-
sions laypeople are using and their validity as markers
of tornadic threat, and the difficult-to-define ‘clarity’
dimension.

Our approach classified stimuli dichotomously, as
tornadic or non-tornadic. An alternative approach is
to characterize the stimuli by their probability of
resulting in a tornado. However, we could not find
those probabilities in the literature, nor the observa-
tional data with which to construct them ourselves. By
using the NWS storm-spotter training curriculum as a
classification guide, we have relied on expert opinion
to decidewhat is tornadic.

Participants were prompted to classify the stimuli
with a question that asked about the occurrence of a
tornado watch (figures 2 and 3). We considered many
alternatives to that chosen formulation, including:
‘Are these clouds associated with tornadoes?’, ‘Are
these clouds often associated with tornadoes?’, ‘Are
these clouds tornado clouds?’, ‘Will these clouds form
a tornado?’, with appropriate changes to other instruc-
tions. While recognizing that some (more sophisti-
cated) participants might have preferred a less
deterministic formulation, we saw no tractable way of
expressing ‘associated’ so that it would be interpreted
similarly by all respondents (Wallsten et al 1986). One
concern with our chosen ‘watch’ formulation was
whether participants would correctly interpret the
prompt. Notwithstanding possible concerns about
self-reports (Ericsson and Simon 1980), pre-testing
found that participants generally interpreted it as
desired, and the open-ended questions asked after the
SDT task found that participants in the actual experi-
ment generally did so as well.

Policy implications
Our results suggest that lay observers have generally
effective heuristics for deciding whether clouds are
tornadic. However, those heuristics lead to biases,

14
The validity of the dimensions can also be investigated by

regressing the actual classifications (tornadic or non-tornadic) of the
11 stimuli in the MDS task on their coordinates in the MDS space.
This logistic regression finds that, for a 1-unit increase on the
darkness dimension, the odds of a stimulus being tornadic are 2.2
times greater. (The coordinates have been standardized, thus 1-unit
corresponds to one standard deviation.) For a 1-unit increase on the
clarity dimension, the odds of a stimulus being tornadic are 1.1 times
greater. However, these parameters cannot be precisely estimated
due to the small sample size.
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including systematically misclassifying shelf clouds as
tornadic, clouds with upper- and mid-level tornadic
features (such as well-defined storm towers) as non-
tornadic, andmammatus clouds as non-tornadic. Look-
ing at theMDS representation (figure 8), projecting onto
the horizontal dimension produces a mostly correct
‘continuum’ from non-tornadic to tornadic phenom-
ena, but with the shelf-clouds intermixed among the
tornadic clouds, and the MDS results further showing
that clouds with upper- and mid-level tornadic features
are likely to be confusedwithnon-tornadic clouds.

Even though the precise d′ and c values observed
here cannot be confidently extrapolated to a real world
setting, the patterns of results have implications for
hazard training, creating risk communications, and
anticipating inappropriate responses to environ-
mental cues. Specifically, they show that lay observers
have acquired some ability to assess tornadic potential,
which could be improved were it possible to remedy
their biases. The results also provide quantitative mea-
sures of behaviour for use in evaluating policy options
(e.g., alternative warning strategies).

Our results suggest that training should take advan-
tage of the attributes that emerged as most salient,
namely the ‘darkness’ and ‘clarity’ of cloud scenes. It
should also emphasize the difference between shelf
clouds and more tornadic formations (e.g., wall
clouds), while devoting extra attention to upper- and
mid-level tornadic cloud features as well as mammatus
clouds. Testing the possibility of such training is a logi-
cal next step in the research, which might be pursued
not only with lay observers, but also with storm spot-
ters, especially in light of the increased interest in their
performance (Jans et al 2011, Jans and Keen 2012, Kle-
now and Reibestein 2014). Deficiencies in storm spot-
ters’ d′s would indicate the need for improved training
to increase perceptual acuity;MDS results could suggest
how to direct that training. As an anonymous reviewer
remarked, forecasterswould have difficulty interpreting
the reports of storm spotters with biased decision cri-
teria, especially if they vary across spotters, making the
implementationofNWSpolicymore difficult.

Better discrimination can also reduce a natural
concern of forecasters: having FA rates so high that
people tune out their warnings (a ‘cry wolf’ effect)
(Brooks 2004, Barnes et al 2007, Simmons and Sut-
ter 2009, League et al 2010, Durage et al 2012, Brotzge
and Donner 2013, Ripberger et al 2014). Since 2007,
the NWS has used warning polygons in order to make
its warnings more specific to the areas under threat, in
contrast to the broader, county-wide warnings still
practiced in Canada or the heterogeneous European
warning strategies (NWS 2008, Rauhala and Schultz
2009, Durage et al 2012, Environment Canada 2014).
Our results suggest an alternative strategy: tailor tor-
nadowarnings to the cues available to the public, based
on proximity to the storm system. For example, indi-
viduals not directly under a tornadic stormmight hear
a warning, but only have upper- or mid-level cues

available to them. A forecast could be more useful to
these individuals if it provided grounds for concern
regarding features that forecasters can see, but these
individuals cannot, such as the stormʼsmovement and
radar-visible signs of tornado threat (e.g., a hook echo)
(Markowski 2002). In addition to providing people
more time to prepare for storms, that additional infor-
mation could also help them to judge forecasters more
fairly (see also Ripberger et al 2014). Of course, the
relevance of our results for creating interventions to
improve protective action decision-making and com-
munications depends upon the extent to which the
public relies on physical environmental cues, which is
likely a function of demographic variables, experience,
and locale, and an empirical question that should be
addressed in futurework.

Conclusion
The novel application of psychophysics presented here
provides a proof-of-concept of an emerging approach
to risk problems: that of understanding human
physical perception (Agdas et al 2012). These methods
could be applied to cues regarding both immediate
risks (e.g., flash floods, influenza, Ebola) and long-
term ones (e.g., living in a tornado- or hurricane-
prone region, or near a nuclear reactor). Understand-
ing what counts as ‘signal’ could improve the evalua-
tion and effectiveness of risk communications (Morss
and Hayden 2010, Fischhoff 2013, Ripberger et al
2014), as well as our understanding of processes such
as how perception of climate change is influenced by
experience of extreme weather events (Leiserowitz
2006, Akerlof et al 2013, Broomell et al 2015, Lefevre
et al 2015, van der Linden 2015).
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